Using STACK for pre- and supplement-course construction in Physics – a field report

TECHNISCHE UNIVERSITÄT DARMSTADT

K. Schmitt, V. Spatz Physics Education Research Group, Technical University of Darmstadt

Theoretical framework

- Unchanged high drop-out in science and engineering studies at german universities: ~ 40% in physics (Heublein, Richter & Schmelzer, 2020)
 - Great heterogeneity in pre-university education
 - Self-reported reasons by students: content-related requirements (Albrecht & Nordmeier, 2011)

Special view on physics minors

- Students seem to struggle with the understanding of physical concepts Lectures are compressed in time and already assume existing knowledge in:
 - Mathematics: Integration & Differentiation, Vectors
 - Physics (basic school knowledge)

Supplement courses for physics minors

Pre course (~8 quizzes)

- **Basic mathematical** knowledge
- Basic knowledge in physics
- to 15 quizzes) • Contents of corresponding lectures and exercises

Accompanying course (up

Implementation since 2020:

- Digital moodle-course for each lecture
- Self-regulated learning without live and predetermined sessions
- Test segments for each content (about 3-6 STACK-based tasks)

 $= \Delta W$

- Accessible one week before the beginning of the semester
- Accessible one week before content is dealt with in the lecture

Goals

- Adjust prior-knowledge of students with different university-entrance qualifications 1. (general qualification with (non)-advanced courses in physics/mathematics, vocational education, etc.)
 - Give students the opportunity to repeat/learn physics contents which are teached in school
 - Almost no opportunities are offered for physics in comparison to mathematics
 - Arithmetic \checkmark
 - Conceptual understanding/knowledge
 - Application of formula and physical concepts within realistic situations
- Offer a wide variety of digital self-learning content for different levels of prior-knowledge 2. in mathematics and especially physics
 - Focus on high versatility and wide applicability in:
 - 1. how contents can be used, 2. why contents are used, 3. by whom contents are used
- **Physics for...** Biology Electrical Engineering **Mechanical** Engineering Civil Engineering Chemistry

Course-design

Overall

Task formats:

- Multiple-Choice
- Calculation & algebraic input:
 - Evaluation and verification of physical units
 - Transposing and simplification of equations
- Derivation of formula
- Graphical tasks & input via graphics: Implemented with JSXGraph

Different learning approaches for each content

- Most tasks contain more than one task format:
 - Results in more complex tasks
 - Not only one aspect of a concept/formula is tested
 - \rightarrow extensive tasks (e.g. text heavy)
- Tasks within one test build up on each other \rightarrow immediate feedback after each task is provided

Intended usage

Fully self-regualted: no live or active support and sessions while learning with the courses (E-Mail or forum post possible) Repeatable tasks with randomized numbers for exam preparation and feedback about what has been learned

- 1. Schritt: Die Funktion wird in zwei Faktoren zerlegt: $f(x) = u(x) \cdot v'(x)$ 2. Schritt: Es gilt die Formel:
- $\int_a^b u(x) \cdot v'(x) \, dx = [u(x) \cdot v(x)]_a^b \int_a^b u'(x) \cdot v(x) \, dx$

linweis: Wird die Funktion f(x) geschickt zerlegt kann das Integral $\int_a^b u'(x) \cdot v(x) \, dx$ einfach bestimmt werden. Ansonsten muss in manchen Fällen Integrationsverfahren mehrfach angewendet werden, bis man auf ein Grundintegral stößt, welches einfach bestimmt werden kann.

Aufgabe: Wenden Sie das Verfahren der partiellen Integration für das folgende unbestimmte Integral an:

 $\int (x+2) e^x dx$

a) Geben Sie dazu zunächst alle benötigten Funktionen für die partielle Integration an (orientieren Sie sich dazu an den Bezeichnungen aus der oben

1. <i>u</i> (<i>x</i>) =	
2. $u'(x) =$	
3. v(x) =	
4. $v'(x) =$	

b) Geben Sie nun die vollständige Stammfunktion von $(x + 2) e^x$ an: $\int (x+2) e^x dx =$

swerte eines Experiments zur Bestimmung der Fallbeschleunigung aufgetragen, das Fallobiekt (Tennisball) zum Zeitpunkt t = 0 los. Die zweite Person misst mit einem Maßband die Fallhöhe des Balls gibt die Zeit mit einer Genauigkeit von 0.01 s an. Die Skala des Maßbande

Practical experience

Participation

- Course got established since the first implementation
- Pre-Course: around 50% of registered users in a lecture
- \rightarrow ~ 300 users per semester, depending on how many lectures are
- offered Accompanying-Course: around 10% with a descending trend
 - during the semester
- \rightarrow Increased usage for exam preparation

Usage in practice

How the service is used in practice Majority

- Before first lecture (priorknowledge)
- After last lecture (exam) Minority:
- Postprocessing of the weekly
- lectures and contentes

Feedback from students Wishes for future application **Pros:**

- Direct connection between visualization of complex contents and abstract mathematical formula
- Consequential errors within multi-level tasks are noticed and are correctly included in the assessment
- Some tasks are close to exam tasks

Cons:

- Too few calculation tasks, especially with view to exam preparation
- User handling seems complex for some students
- Content related hints are missing
- \rightarrow Course contents only show full solution

Future outlook

- Self assessment of present prior knowledge \rightarrow Partial response trees \rightarrow Partial response trees give the opportunity to adress different levels of prior-knowledge and misconceptions
- (inter)active supplementation of lectures
- Creation of real experimental situations

Contact:

Kevin Schmitt Prof. Dr. Verena Spatz Scientific employee **Junior Professor** Physics Department TU Physics Department TU Darmstadt, Darmstadt, kevin_richard.schmitt verena.spatz@tu-@tu-darmstadt.de darmstadt.de

Course design related:

- More instructions for tasks
 - Hints
 - More detailed introduction (f.e. mathematical input)
- Overall more tasks for existing contents **Project related:**
- Cooperation with other universities
- Provision of a high variety, quality assured database

Hessisches Ministerium für Wissenschaft und Kunst

Heublein, Ulrich; Richter, Johanna; Schmelzer, Robert (2020): DZHW-Brief 03 | 2020 - Die Entwicklung der Studienabbruchquoten an den deutschen Hochschulen. In: DZWH Brief (03). Albrecht; André; Nordmeier; Volkhard: Ursachen des Studienabbruchs in Physik. Eine explorative Studie.

Netzwerk digitale Hochschullehre Hessen